Normal view MARC view ISBD view

The role of glucagon : GCGR axis in pancreatic neuroendocrine / Bárbara Ferreira ; orient. Jacinta Serpa

Main Author Ferreira, Bárbara Carina de Poeiras Secondary Author Serpa, Jacinta Language Inglês. Country Portugal. Publication Lisboa : NOVA Medical School, Universidade NOVA de Lisboa, 2023 Description 125 p. Dissertation Note or Thesis: Dissertação de Mestrado
Investigação Biomédica
2023
Faculdade de Ciências Médicas, Universidade NOVA de Lisboa
Abstract Abstract Cancer metabolism research has studied the relationship between cellular bioenergetics, biosynthesis, and tumour progression. However, the impact of systemic metabolism and diet on tumour evolution is less understood. This thesis delves into the role of glucagon, a key hormone in systemic metabolism, particularly its influence on pancreatic neuroendocrine tumours (pNETs). Glucagon ability to bind to its natural receptor, GCGR, and its regulator, GLP-1R, introduces intricate dynamics to cancer biology. Our research focused on the role of glucagon in the regulation of cancer cell features and the metabolic remodelling in the presence and absence of glucose. To fulfil the experiments pNETs cell lines (BON-1 and QGP-1) and non-malignant pancreatic α-TC1 cell line were used as models. Results showed pNETs cells responded differently to glucose deprivation than α-TC1 cells. Specifically, pNETs cells upregulated GCGR in the absence of glucose, while α-TC1 cells did so in high-glucose conditions. Glucagon activated the MAPK/ERK pathway, especially in pNETs cells without glucose and α-TC1 cells with high glucose. Tests revealed that glucagon enhanced metabolic viability, proliferation, and migration in pNETs cells under glucose deprived conditions and hyperglucagonemia. Meanwhile, in α-TC1 cell line, glucagon modulated these features under high-glucose conditions and physiological glucagon levels. The study also explored the effects of blocking GCGR using an inhibitor, LGD-6972. The results varied across cell lines and glucagon conditions. Metabolic analysis using NMR revealed differences in amino acid levels and metabolic processes based on glucose availability between cell lines. Interestingly, QGP-1 and α-TC1 produced glucose in no-glucose conditions, and glucagon upregulated glucose production in α-TC1. Furthermore, gene expression analysis showed that glucose conditions largely influenced gene expression patterns in both pNETs and non-malignant α-cells. The increased levels of alanine, and the ability of QGP-1 and α-TC1 cells to produce glucose together with the upregulation of gluconeogenesis related genes it was clear that the synthesis of glucose is a core pathway in α-TC1 cell biology and QGP-1 cells. Hence gluconeogenesis may be beneficial for some pNETs subsets and its open new perspectives to novel metabolism-based strategies to clinically manage pNETs. Furthermore, the production of glucose by α-cells was not described so far and is a step forward in endocrinology and systemic metabolism. Lastly, the study examined the association between GCGR and disease parameters in pNETs cases. Findings revealed a negative correlation between GCGR expression and tumour grading. Additionally, GLP-1R expression was lower in pNETs than in healthy tissue. This underscores the significant, yet not fully understood, role of glucagon signalling in pNETs progression. The complex relationship between glucose conditions, glucagon signalling, and cellular characteristics warrants further exploration for future therapeutic strategies for pNETs and related diseases
Resumo À medida que a investigação sobre o metabolismo em cancro aprofunda a sua compreensão da relação entre bioenergética e biossíntese celular e progressão tumoral, as influências do metabolismo sistémico e da dieta na evolução tumoral permanecem amplamente inexploradas. Esta tese pretende explorar a relevância do glucagon, uma hormona vital no metabolismo sistémico, investigando o seu papel na biologia do cancro e progressão da doença, especificamente em tumores neuroendócrinos pancreáticos (pNETs). A capacidade do glucagon ligar-se tanto ao seu recetor natural, GCGR, como ao recetor do seu controlador GLP-1 (GLP-1R) introduz dinâmicas complexas no contexto da biologia do cancro. O nosso estudo centrou-se no papel do glucagon na regulação das características das células malignas e na remodelação metabólica na presença e ausência de glucose. Para tal, foram usadas como modelo as linhas celulares de pNETs (BON-1 e QGP-1) e a linha celular pancreática não maligna α-TC1. Identificámos uma resposta adaptativa nas linhas celulares de pNETs sob privação de glucose com o aumento da expressão do GCGR. Em contraste, células α-TC1mostraram um aumento da expressão do GCGR em condições de elevados níveis de glucose. O glucagon ativou a via MAPK/ERK, observado pelo aumento dos níveis de pERK, especialmente nas células celulares de pNETs sob privação de glucose e em células α-TC1 em condições ricas em glucose. Foi realizada uma análise intensiva para compreender os efeitos do glucagon nas características celulares como a viabilidade metabólica, a proliferação e a migração celular. Observou-se que, em condições de privação de glucose e hiperglucagonemia, o glucagon aumentou estas atividades nas linhas BON-1 e QGP-1. Entretanto, na linha celular αTC1, o glucagon teve o mesmo efeito, mas sob condições ricas em glucose e níveis fisiológicos de glucagon. O estudo também explorou os efeitos do bloqueio do GCGR usando um inibidor competitivo, LGD-6972. Os resultados variaram entre linhas celulares e condições de glucagon. Ao aplicar a técnica de espetroscopia de ressonância magnética nuclear (RMN), observamos diferenças nos níveis de aminoácidos e remodelação metabólica com base na disponibilidade de glucose entre as linhas celulares. Curiosamente, as linhas celulares QGP-1 e α-TC1 produziram glucose em condições sem glucose, e o glucagon aumentou a produção de glucose nas α-TC1. Além disso, a análise da expressão genética mostrou que as condições de glucose influenciaram amplamente os padrões de expressão genética em ambas as linhas celulares de pNETs e células α não malignas. A capacidade das células QGP-1 e α-TC1 de produzir glucose, juntamente com regulação positiva de genes relacionados com a gluconeogénese, tornou claro que a síntese de glucose é uma via central na biologia celular α-TC1 e nas células QGP-1. Além disso, a produção de glucose por células α não foi descrita até agora e representa um avanço na endocrinologia e no metabolismo sistémico. Por último, o estudo avaliou a associação entre a expressão de GCGR e parâmetros da doença em casos de pNETs. Os resultados revelaram uma correlação negativa entre a expressão de GCGR o grau da doença. Além disso, a expressão de GLP-1R foi menor nos pNETs do que em tecido saudável. Isto sublinha o papel significativo, mas ainda não totalmente compreendido, da sinalização do glucagon na progressão dos pNETs. A relação complexa entre condições de glucose, sinalização de glucagon e características celulares exige mais investigação para futuras estratégias terapêuticas para pNETs e outras patologias relacionadas
Topical name Glucagon
Carcinoma, Neuroendocrine
Pancreatitis
Academic Dissertation
Online Resources Click here to access the eletronic resource http://hdl.handle.net/10362/162617
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Holdings
Item type Current location Call number url Status Date due Barcode
Documento Eletrónico Biblioteca NMS|FCM
online
RUN http://hdl.handle.net/10362/162617 Available 20240026

Dissertação de Mestrado Investigação Biomédica 2023 Faculdade de Ciências Médicas, Universidade NOVA de Lisboa

Abstract Cancer metabolism research has studied the relationship between cellular bioenergetics, biosynthesis, and tumour progression. However, the impact of systemic metabolism and diet on tumour evolution is less understood. This thesis delves into the role of glucagon, a key hormone in systemic metabolism, particularly its influence on pancreatic neuroendocrine tumours (pNETs). Glucagon ability to bind to its natural receptor, GCGR, and its regulator, GLP-1R, introduces intricate dynamics to cancer biology. Our research focused on the role of glucagon in the regulation of cancer cell features and the metabolic remodelling in the presence and absence of glucose. To fulfil the experiments pNETs cell lines (BON-1 and QGP-1) and non-malignant pancreatic α-TC1 cell line were used as models. Results showed pNETs cells responded differently to glucose deprivation than α-TC1 cells. Specifically, pNETs cells upregulated GCGR in the absence of glucose, while α-TC1 cells did so in high-glucose conditions. Glucagon activated the MAPK/ERK pathway, especially in pNETs cells without glucose and α-TC1 cells with high glucose. Tests revealed that glucagon enhanced metabolic viability, proliferation, and migration in pNETs cells under glucose deprived conditions and hyperglucagonemia. Meanwhile, in α-TC1 cell line, glucagon modulated these features under high-glucose conditions and physiological glucagon levels. The study also explored the effects of blocking GCGR using an inhibitor, LGD-6972. The results varied across cell lines and glucagon conditions. Metabolic analysis using NMR revealed differences in amino acid levels and metabolic processes based on glucose availability between cell lines. Interestingly, QGP-1 and α-TC1 produced glucose in no-glucose conditions, and glucagon upregulated glucose production in α-TC1. Furthermore, gene expression analysis showed that glucose conditions largely influenced gene expression patterns in both pNETs and non-malignant α-cells. The increased levels of alanine, and the ability of QGP-1 and α-TC1 cells to produce glucose together with the upregulation of gluconeogenesis related genes it was clear that the synthesis of glucose is a core pathway in α-TC1 cell biology and QGP-1 cells. Hence gluconeogenesis may be beneficial for some pNETs subsets and its open new perspectives to novel metabolism-based strategies to clinically manage pNETs. Furthermore, the production of glucose by α-cells was not described so far and is a step forward in endocrinology and systemic metabolism. Lastly, the study examined the association between GCGR and disease parameters in pNETs cases. Findings revealed a negative correlation between GCGR expression and tumour grading. Additionally, GLP-1R expression was lower in pNETs than in healthy tissue. This underscores the significant, yet not fully understood, role of glucagon signalling in pNETs progression. The complex relationship between glucose conditions, glucagon signalling, and cellular characteristics warrants further exploration for future therapeutic strategies for pNETs and related diseases

Resumo À medida que a investigação sobre o metabolismo em cancro aprofunda a sua compreensão da relação entre bioenergética e biossíntese celular e progressão tumoral, as influências do metabolismo sistémico e da dieta na evolução tumoral permanecem amplamente inexploradas. Esta tese pretende explorar a relevância do glucagon, uma hormona vital no metabolismo sistémico, investigando o seu papel na biologia do cancro e progressão da doença, especificamente em tumores neuroendócrinos pancreáticos (pNETs). A capacidade do glucagon ligar-se tanto ao seu recetor natural, GCGR, como ao recetor do seu controlador GLP-1 (GLP-1R) introduz dinâmicas complexas no contexto da biologia do cancro. O nosso estudo centrou-se no papel do glucagon na regulação das características das células malignas e na remodelação metabólica na presença e ausência de glucose. Para tal, foram usadas como modelo as linhas celulares de pNETs (BON-1 e QGP-1) e a linha celular pancreática não maligna α-TC1. Identificámos uma resposta adaptativa nas linhas celulares de pNETs sob privação de glucose com o aumento da expressão do GCGR. Em contraste, células α-TC1mostraram um aumento da expressão do GCGR em condições de elevados níveis de glucose. O glucagon ativou a via MAPK/ERK, observado pelo aumento dos níveis de pERK, especialmente nas células celulares de pNETs sob privação de glucose e em células α-TC1 em condições ricas em glucose. Foi realizada uma análise intensiva para compreender os efeitos do glucagon nas características celulares como a viabilidade metabólica, a proliferação e a migração celular. Observou-se que, em condições de privação de glucose e hiperglucagonemia, o glucagon aumentou estas atividades nas linhas BON-1 e QGP-1. Entretanto, na linha celular αTC1, o glucagon teve o mesmo efeito, mas sob condições ricas em glucose e níveis fisiológicos de glucagon. O estudo também explorou os efeitos do bloqueio do GCGR usando um inibidor competitivo, LGD-6972. Os resultados variaram entre linhas celulares e condições de glucagon. Ao aplicar a técnica de espetroscopia de ressonância magnética nuclear (RMN), observamos diferenças nos níveis de aminoácidos e remodelação metabólica com base na disponibilidade de glucose entre as linhas celulares. Curiosamente, as linhas celulares QGP-1 e α-TC1 produziram glucose em condições sem glucose, e o glucagon aumentou a produção de glucose nas α-TC1. Além disso, a análise da expressão genética mostrou que as condições de glucose influenciaram amplamente os padrões de expressão genética em ambas as linhas celulares de pNETs e células α não malignas. A capacidade das células QGP-1 e α-TC1 de produzir glucose, juntamente com regulação positiva de genes relacionados com a gluconeogénese, tornou claro que a síntese de glucose é uma via central na biologia celular α-TC1 e nas células QGP-1. Além disso, a produção de glucose por células α não foi descrita até agora e representa um avanço na endocrinologia e no metabolismo sistémico. Por último, o estudo avaliou a associação entre a expressão de GCGR e parâmetros da doença em casos de pNETs. Os resultados revelaram uma correlação negativa entre a expressão de GCGR o grau da doença. Além disso, a expressão de GLP-1R foi menor nos pNETs do que em tecido saudável. Isto sublinha o papel significativo, mas ainda não totalmente compreendido, da sinalização do glucagon na progressão dos pNETs. A relação complexa entre condições de glucose, sinalização de glucagon e características celulares exige mais investigação para futuras estratégias terapêuticas para pNETs e outras patologias relacionadas

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer